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Abstract. The canonical homology of a generalized Poisson manifold is introduced, and the
two spectral sequences associated with the periodic double complex are studied. The generalized
Poisson cohomology is also discussed, and a natural parity with the canonical homology is
established. The results hold for Nambu–Poisson manifolds.

1. Introduction

The study of multibrackets on manifolds has recently gained an increasing interest due to the
geometric formulation of Takhtajan [23] of Nambu–Poisson brackets. A Nambu–Poisson
bracket is a multibracket enjoying an integrability property which is a natural generalization
of Jacobi’s identity for Poisson brackets. Another different kind of multibrackets (called
generalized Poisson) were recently introduced by Azcárragaet al [1, 2] (see also [3]). They
are brackets of even order, and enjoy a very different (in principle) integrability condition
which is the natural extension of the vanishing of the Schouten–Nijenhuis bracket of the
multivector3 defining the multibracket. This notion is meaningful provided3 is of an even
order, otherwise [3,3] trivially vanishes. Recently [15], we introduced a more general kind
of geometrical structure which permits us to simultaneously discuss both types of brackets.
The point is to forget for a while the integrability condition. So, we are in the presence of
a multivector3 of order, sayn, on a manifoldM. 3 will be called a generalized almost
Poisson structure andM a generalized almost Poisson manifold. The relationship between
the algebra level (the multibracket) and the manifold level (the multivector) is given by the
formula

{f1, . . . , fn} = 3(df1, . . . ,dfn).

The purpose of this paper is to introduce and study the canonical homology and
relate it to the generalized Poisson cohomology of a generalized Poisson structure. For
a generalized Poisson manifold(M,3) the canonical homology is obtained by defining a
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Koszul differentialδ = [i(3), d] which extends the well known operator defined by Koszul
for Poisson manifolds. If3 is of order 2n we get 2n−1 canonical complexes which define
the so-called canonical homology ofM. Since dδ + δd = 0, we can also consider the
periodic double complexCper

p,q(M) = �(2n−1)q−p(M), p, q ∈ Z, where d is the horizontal
differential andδ is the vertical differential. This double complex is the natural extension
of that defined by Brylinski [6]. This fact leads us to discuss the following two problems.

Problems.
(i) Give conditions on a compact generalized Poisson manifoldM which ensure that

any de Rham cohomology class has a harmonic (with respect to the generalized Poisson
structure) representativeα, that is, dα = δα = 0.

(ii) Study the degeneration of the two spectral sequences associated to the generalized
Poisson structure.

In view of the first problem, we know that it holds for compact symplectic manifolds
satisfying the hard Lefschetz theorem [21], but it is not true for arbitrary compact symplectic
manifolds [9]. In view of the second problem, in section 3 we prove that the second spectral
sequence always degenerates at the first term, but it is not the case for the first spectral
sequence as we have seen for Poisson manifolds [10]. In section 3, we also discuss several
interesting examples of generalized Poisson structures: volume forms, hyper-Kähler and
bi-Hamiltonian manifolds.

In section 4 we define a contravariant differentiation on the algebra of multivectors
by ∂(P ) = −[P,3] which yields a family of 2n − 1 complexes. The corresponding
cohomology is called the generalized Poisson cohomology, and extends the one defined
for Poisson manifolds [24]. IfG is a Lie group endowed with a left invariant generalized
Poisson structure, then it is an obvious relation between the generalized Poisson cohomology
restricted to the left invariant multivectors onG and the generalized Poisson cohomology
discussed in [3] (see also [22]). We also obtain a natural parity between the canonical
homology and the generalized Poisson cohomology of a generalized Poisson manifold.

We finally remark that a Nambu–Poisson manifold of even order is also generalized
Poisson, so the above results hold for Nambu–Poisson manifolds of even order. More than
this, all the constructions and results remain valid when one considers almost generalized
Poisson structures of odd order, since in this case [3,3] always vanishes. This permits us to
apply our results to arbitrary Nambu–Poisson manifolds (of odd or even order, indistinctly)
(see section 5).

2. Generalized Poisson manifolds

Let M be a differentiable manifold of dimensionm. We denote byX(M) the Lie algebra
of vector fields onM and byC∞(M,R) the algebra ofC∞ real-valued functions onM.

An almost Poisson n-tensoron M is a skew-symmetric tensor3 of type (n, 0) (see
[15]). If 3 is an almost Poissonn-tensor onM then we can define an-linear mapping on
C∞(M,R) as follows

{f1, . . . , fn} = 3(df1, . . . ,dfn) for f1, . . . , fn ∈ C∞(M,R). (1)

The bracket{, . . . , } is skew-symmetric and satisfies the Leibniz rule. Thus, it is analmost
Poisson bracket of ordern. Conversely, if{, . . . , } is an almost Poisson bracket of ordern
then an almost Poisson tensor3 can be defined by (1) (see [15]). In such a case,(M,3) is
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called ageneralized almost Poisson manifold. If �r(M) is the space ofr-forms onM then
the n-vector3 induces aC∞(M,R)-linear mapping # :�n−1(M) −→ X(M) given by

〈#(α1 ∧ . . . ∧ αn−1), β〉 = 3(α1, . . . , αn−1, β) for α1, . . . , αn−1, β ∈ �1(M). (2)

Therefore, iff1, . . . , fn−1 aren − 1 functions onM, we define a vector fieldXf1...fn−1 =
#(df1 ∧ . . . ∧ dfn−1) which is called theHamiltonian vector fieldassociated with the
Hamiltonian functionsf1, . . . , fn−1.

A richer structure, related to interesting dynamical problems, can be considered by
adding integrability conditions to the almost Poisson bracket. Two, in principle, unrelated
integrability conditions may be assumed.

(3a) (Generalized Jacobi identity); for n even,

Alt ({f1, . . . , fn−1, {g1, . . . , gn}}) = 0

for all functionsf1, . . . , fn−1, g1, . . . , gn on M. This is equivalent to [3,3] = 0. In this
case,{, . . . , } (resp.3) is called ageneralized Poisson bracket(resp. tensor) and (M,3)
is a generalized Poisson manifold[1, 2, 15].

(3b) (Fundamental identity)

{f1, . . . , fn−1, {g1, . . . , gn}} =
n∑
i=1

{g1, . . . , {f1, . . . , fn−1, gi} . . . , gn}

for all functionsf1, . . . , fn−1, g1, . . . , gn onM. In this case,{, . . . , } (resp.3) is called a
Nambu–Poisson bracket(resp. tensor) andM is a Nambu–Poisson manifold[15, 23].

Notice that ifn = 2 then (3a) and (3b) are equivalent andM is a Poisson manifold. On
the other hand, an even-order Nambu–Poisson structure is generalized Poisson [15].

Now, let M be an orientedn-dimensional manifold andvM a volume form. Givenn
functionsf1, . . . , fn onM, we define its bracket by the formula

df1 ∧ . . . ∧ dfn = {f1, . . . , fn}vM.
It is not hard to prove that it is a Nambu–Poisson bracket [13]. Moreover, a Nambu–Poisson
tensor3 6= 0 of ordern comes from a volume form. More generally, the Hamiltonian vector
fields on a Nambu–Poisson manifold of ordern > 3 generate a generalized foliationD whose
leaves are either points orn-dimensional Nambu–Poisson manifolds with Nambu–Poisson
structure coming from a volume form [15] (see also [13, 20, 25]).

3. The canonical complex

This section is devoted to the generalization of the canonical homology and the related
spectral sequences studied in [6, 9, 10–12, 14] for Poisson manifolds.

Definition 3.1.Let (M,3) be a generalized Poisson manifold of order 2n. Then we define
the generalized Koszul (or canonical) differentialδ as the commutator ofi(3) and the
exterior differential d, that is,

δ = [i(3), d] = i(3) ◦ d− d ◦ i(3)
wherei(3) denotes the inner product by3.

So, we have

δ : �k(M) −→ �k−2n+1(M)

for k > 2n− 1; andδα = 0, for α ∈ �k(M), with k 6 2n− 2.



1256 R Ibáñez et al

Proposition 3.2.Let (M,3) be a generalized Poisson manifold of order 2n. Then

δ(f0df1 ∧ . . . ∧ dfk) =
∑

16i1<...<i2n−16k
(−1)i1+...+i2n−1+n

×{f0, fi1, . . . , fi2n−1} df1 ∧ . . . ∧ d̂fi1 ∧ . . . ∧ d̂fi2n−1 ∧ . . . ∧ dfk

+
∑

16i1<...<i2n6k
(−1)i1+...+i2n+n+1f0

×d{fi1, . . . , fi2n} ∧ df1 ∧ . . . ∧ d̂fi1 ∧ . . . ∧ d̂fi2n ∧ . . . ∧ dfk.

Proof. The results follows from a direct calculation using the definition of the generalized
Koszul differential. �

Lemma 3.3.We have
(i) 2i(3)di(3) = di(3)2+ i(3)2d;
(ii) ki(3)di(3)k−1 = (k − 1)di(3)k + i(3)kd, ∀k ∈ N.

Proof. A general property of the Schouten–Nijenhuis bracket is that [[i(P ), d], i(Q)] =
i([P,Q]). Therefore, takingP = Q = 3, we have [[i(3), d], i(3)] = i([3,3]) = 0,
which implies 2i(3)di(3) = di(3)2 + i(3)2d. This proves (i). Part (ii) follows by
induction. �

Now, from lemma 3.3 (part (i)), we deduce thatδ2 = 0. So, we have the family of
2n− 1 canonical complexes

. . . −→ �2(2n−1)+j (M)
δ−→�(2n−1)+j (M)

δ−→�j(M) −→ 0

for j = 0, . . . ,2n−2. Thej th complex defines a homology which is called thej -canonical
homologyof M. The homology group of degreek = i(2n−1)+j is denoted byHj can

k (M).
It is clear that ifM is a Poisson manifold thenH 0 can

∗ (M) is just the canonical homology
H can
∗ (M) of M studied by Brylinski [6].

Example 3.4 (volume forms).Let vM be a volume form in a compact (connected) manifold
M of dimension 2n > 4. We obtain the following two non-trivial complexes

�2n−1(M)
δ−→�0(M) −→ 0

�2n(M)
δ−→�1(M) −→ 0.

The other complexes are trivial. Therefore, the canonical homology groups are:

H 0 can
0 (M) = �0(M)/δ(�2n−1(M)) ∼= R

H 0 can
2n−1(M) = {α ∈ �2n−1(M)|δα = 0} = {α ∈ �2n−1(M)|dα = 0}

H 1 can
1 (M) = �1(M)/δ(�2n(M)) = �1(M)/{df |f ∈ C∞(M,R)}

H 1 can
2n (M) = {α ∈ �2n(M)|δα = 0} ∼= R

H
j can
k (M) = �k(M) for k = 2, . . . ,2n− 2, j 6= 0, 1.

Remark 3.5.Example 3.4 shows that, in general, the canonical homology groups are not
finite dimensional.

A straightforward computation shows the following.
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Proposition 3.6.We have

dδ + δd= 0.

From proposition 3.6 we may define the canonical double complex given byCp,q(M) =
�(2n−1)q−p(M), for p, q > 0. We also can define the periodic double complexC

per
p,q(M) =

�q(2n−1)−p(M), for p, q ∈ Z, which has d for horizontal differential andδ for vertical
differential, both of degree−1. More precisely, the vertical arrows are given by the 2n− 1
complexes, and they are horizontally connected by the exterior differential.

Associated with the periodic double complex there are two spectral sequences{Er(M)}
and{′Er(M)} that converge to the total homologyHD

∗ (M) of the total complex, that is,

(C
per
k (M) = ⊕p+q=kCper

p,q(M),D = d+ δ).
Notice that the first term of the first spectral sequence is the canonical homology, that is,

E1
p,q(M) is the canonical homology group of degreeq(2n− 1)−p. The first differential is
δ1 = d. Moreover, the first term of the second spectral sequence is the de Rham cohomology:
′E1
p,q(M) = Hq(2n−1)−p

dR (M), and the first differential is′δ1 = δ.
Next, we will discuss the following two problems, which are a natural extension of the

corresponding ones posed by Brylinski [6] in the context of Poisson manifolds.

Problems.
(i) Give conditions on a compact generalized Poisson manifoldM which ensure that

any de Rham cohomology class has a harmonic (with respect to the generalized Poisson
structure) representativeα, that is, dα = δα = 0.

(ii) Study the degeneration of the two spectral sequences associated to the generalized
Poisson structure.

Theorem 3.7.For any generalized Poisson manifold(M,3), the second spectral sequence
of the double complexCper

p,q(M) degenerates at the first term′E1(M), that is, ′E1(M) ∼=
′E∞(M).

Proof. This follows from lemma 3.3 and the definition of the second spectral sequence, in
a similar way that for the Poisson case [10]. �

Remark 3.8.The above two problems have already been studied for compact Poisson
manifolds. For compact symplectic manifolds it was proved by Mathieu [21] that any
de Rham cohomology class has a symplectically harmonic representative if and only if it
satisfies the hard Lefschetz theorem. So, in particular the result is true for compact Kähler
manifolds [6]. However, the result does not hold for arbitrary symplectic manifolds [9]. For
compact cosymplectic manifolds the result holds, but not for compact almost cosymplectic
manifolds [14].

In view of the second problem, we have that the first spectral sequence degenerates at the
first term for compact symplectic manifolds [6], but not for compact almost cosymplectic
manifolds [10, 12], and then, not for compact Poisson manifolds. The second spectral
sequence always degenerates at the first term [10, 12].

We also notice that the canonical double complex was recently extended for Jacobi
manifolds by Chineaet al [7, 8].
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Example 3.9 (volume forms).Using the results in example 3.4, we deduce that for a
generalized Poisson structure coming from a volume form on a compact (connected)
manifoldM any de Rham cohomology class has a harmonic (with respect to the generalized
Poisson structure) representative. Moreover, the first spectral sequence degenerates at the
second term, that is,E2(M) ∼= E∞(M).
Example 3.10 (hyper-K¨ahler manifolds).Some interesting examples of generalized Poisson
manifolds are the hyper-K̈ahler manifolds [5, 16], that is, differentiable manifolds of
dimension 4n with a Riemannian metricg and three complex structuresJ1, J2, J3 compatible
with g and such that:

(i) the complex structures satisfy the quaternionic relations, i.e.J3 = J1J2 = −J2J1;
(ii) the Kähler formsωi defined byωi(X, Y ) = g(X, JiY ), forX, Y ∈ X(M), are closed.
If we take the Poisson structures3i associated to the K̈ahler formsωi , it can be proved

that they are compatible (i.e. [3i,3j ] = 0, ∀i, j ). Therefore, the fundamental 4-vector

3 = 31 ∧31+32 ∧32+33 ∧33 (3)

satisfies [3,3] = 0, so it is a generalized Poisson structure of order 4 onM.
Let δ be the generalized Koszul operator onM. Using (3) and lemma 3.3, we deduce

that

δ = 2
3∑

j=1

(i(3j )δj ) (4)

whereδj is the Koszul operator associated to the Poisson 2-vector3j .
On the other hand, from the results of Brylinski [6] (see corollary 2.4.2 in [6]), we

obtain that if(N, J, g) is a Kähler manifold andα is a harmonic form onN with respect
to the Riemannian metricg thenα is also harmonic with respect to the associated Poisson
structure onN . Using this fact and (4), we conclude that problem (i) has an affirmative
answer for the generalized Poisson structure of a compact hyper-Kähler manifold, that is, if
M is a compact hyper-K̈ahler manifold then any de Rham cohomology class has a harmonic
representative with respect to the generalized Poisson structure.

Example 3.11 (bi-Hamiltonian manifolds).Let 31 and 32 be two compatible Poisson
structures on am-dimensional manifoldM. Then3 = 31 ∧ 32 is a generalized Poisson
manifold of order 4 (see [16]). A simple computation shows that

δ = i(31)δ2+ δ1i(32)

whereδ (respectively,δ1 andδ2) is the Koszul operator for3 (respectively,31 and32).
Now, using the fact thatδ1i(32)− i(32)δ1 = [[ i(31), d], i(32)] = i([31,32]) = 0, it

follows that

δ = i(31)δ2+ i(32)δ1. (5)

We consider the two following cases.
(i) Suppose that31 = 32 = 3̄ and that3̄ is the Poisson tensor of a symplectic form

ω on M. Then, ifM is compact and satisfies the hard Lefschetz theorem we deduce that
problem (i) has an affirmative answer for3.

(ii) Suppose thatM is compact, thatg is a Riemannian metric onM and that(J1, g1)

and (J2, g2) are two K̈ahler structures onM such that31 and32 are the Poisson tensors
associated with the K̈ahler formsω1 andω2 of the structures(J1, g) and(J2, g) respectively.
Then, using (5) and proceeding as in the case of a hyper-Kähler manifold, we conclude that
problem (i) also has an affirmative answer for3.



Homology and cohomology on generalized Poisson manifolds 1259

4. Generalized Poisson cohomology

In this section we will extend the Chevalley–Eilenberg cohomology of the Lie algebra of
the functions on Poisson manifolds to the framework of generalized Poisson manifolds.
Then, the generalized Poisson cohomology can be seen as the cohomology of a family of
subcomplexes of the generalized Chevalley–Eilenberg complexes.

Let (M,3) be a generalized Poisson manifold of order 2n. We consider the vector
spaceCkgCE(M) given by

CkgCE(M) = {P̃ : C∞(M,R)× k· · · × C∞(M,R) −→ C∞(M,R)|P̃
is k-linear and skew-symmetric}.

Define the linear differential operator∂̃ : CkgCE(M) −→ Ck+2n−1
gCE (M) by

∂̃P̃ (f1, . . . , fk+2n−1) =
∑

16i1<···<i2n6k+2n−1

(−1)i1+···+i2n+n+1

×P̃ ({fi1, . . . , fi2n}, f1, . . . , f̂i1 . . . , f̂i2n , . . . , fk+2n−1)

+
∑

16i1<···<i2n−16k+2n−1

(−1)i1+···+i2n−1+n+1

×{P̃ (f1, . . . , f̂i1, . . . , f̂i2n−1, . . . , fk+2n−1), fi1, . . . , fi2n−1} (6)

for P̃ ∈ CkgCE(M) andf1, . . . , fk+2n−1 ∈ C∞(M,R).
Using the properties of the generalized Poisson bracket{, . . . , } we have that̃∂2 = 0.

Hence, we may consider the family of 2n− 1 differential complexes

0−→ C
j

gCE(M)
∂̃−→C(2n−1)+j

gCE (M)
∂̃−→C2(2n−1)+j

gCE (M) −→ . . .

for j = 0, . . . ,2n − 2. The cohomology defined by these complexes will be called the
generalized Chevalley–Eilenberg cohomologyof M. The generalized Chevalley–Eilenberg
cohomology group of degreek = i(2n− 1)+ j of the complexj is denoted byHk

j gCE(M).
It is clear that ifM is a Poisson manifold thenH ∗0 gCE(M) is just the Chevalley–Eilenberg
cohomology of the Lie algebra of the functions onM (see [19]).

Now, let Vk(M) be the space ofk-vectors onM and ι : Vk(M) −→ CkgCE(M) be the
monomorphism of real vector spaces given by

ι(P )(f1, . . . , fk) = P(df1, . . . ,dfk)

for P ∈ Vk(M) and f1, . . . , fk ∈ C∞(M,R). Notice that if P̃ ∈ CkgCE(M) then

P̃ ∈ ι(Vk(M)) if and only if

P̃ (f1g1, f2, . . . , fk) = f1P̃ (g1, f2, . . . , fk)+ g1P̃ (f1, f2, . . . , fk)

for f1, g1, f2, . . . , fk ∈ C∞(M,R).
Moreover, we have the following.

Proposition 4.1.If P ∈ Vk(M) then

∂̃(ι(P )) = ι(∂(P ))
where∂ : Vk(M) −→ Vk+2n−1(M) is the linear differential operator defined by

∂(Q) = −[Q,3]

for Q ∈ Vk(M).
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Proof. Using the characterization of the Schouten–Nijenhuis bracket given by Bhaskara and
Viswanath [4] we have that

∂P (df1, . . . ,dfk+2n−1) =
∑

16i1<...<i2n6k+2n−1

(−1)i1+...+i2n+n+1

×P(d{fi1, . . . , fi2n}, df1, . . . , d̂fi1, . . . , d̂fi2n , . . . ,dfk+2n−1)

+
∑

16i1<...<i2n−16k+2n−1

(−1)i1+···+i2n−1+n+1

×{P(df1, . . . , d̂fi1, . . . , d̂fi2n−1, . . . ,dfk+2n−1), fi1, . . . , fi2n−1}
for f1, . . . , fk+2n−1 ∈ C∞(M,R).

Thus, from (6), we deduce the result. �

Definition 4.2.Let (M,3) be a generalized Poisson manifold of order 2n. The linear
differential operator∂ : Vk(M) −→ Vk+2n−1(M) defined by

∂P = −[P,3]

is called thecontravariant exterior differentiation.

The contravariant exterior differentiation on a generalized Poisson manifold(M,3) was
studied in [2] and the following result was proved.

Proposition 4.3 ([2]).
(i) ∂2 = 0;
(ii) ∂(P1 ∧ P2) = (∂P1) ∧ P2+ (−1)deg(P1)P1 ∧ (∂P2);
(iii) ∂[P1, P2] = −[∂P1, P2] − (−1)deg(P1)[P1, ∂P2].

Notice that (i) follows directly from proposition 4.1.
Propositions 4.1 and 4.3 allow us to introduce the family of 2n − 1 differential

subcomplexes of the generalized Chevalley–Eilenberg complexes ofM:

0−→ Vj (M) ∂−→V (2n−1)+j (M)
∂−→V2(2n−1)+j (M) −→ . . .

for j = 0, . . . ,2n − 2. The cohomology defined by these complexes was called the
generalized Poisson(gP) cohomologyof M in [2]. The gP-cohomology group of degree
k = i(2n− 1)+ j is denoted byHk

j gP(M). It is clear that ifM is a Poisson manifold then
the gP-cohomology ofM is just the Lichnerowicz–Poisson (LP) cohomology defined by
Lichnerowicz [19].

Remark 4.4.
(i) H 0

0 gP(M) is the space of Casimir functions onM, that is, those functionsc such that
{f1, . . . , f2n−1, c} = 0 for all differentiable functionsf1, . . . f2n−1.

(ii) If n > 2 thenH 1
1 gP(M) = {X ∈ X(M)|LX3 = [X,3] = 0}, that is,H 1

1 gP(M) is the
space of infinitesimal automorphisms of the generalized Poisson structure3.

(iii) H 2n
1 gP(M) has a distinguished element [3] defined by the 2n-cocycle3. If [3] = 0,

M is called anexact generalized Poisson manifold.

Next, we will introduce an-bracket of 1-forms and we will obtain the relation between
this n-bracket and the contravariant exterior differentiation.

Let (M,3) be a generalized almost Poisson manifold of ordern. We define anR-
multilinear, skew-symmetric operation

{, . . . , } : �1(M)× . . .×�1(M) −→ �1(M)
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by

{α1, . . . , αn} =
n∑
j=1

(−1)n+jL(#(α1∧...∧α̂j∧...∧αn))αj − (n− 1) d(3(α1, . . . , αn))

for αj ∈ �1(M) (j = 1, . . . , n) (see [24, 25]).
Taking into account the relationLX = di(X) + i(X)d, we obtain thatL(fX) =

df ∧ i(X)+ fLX. Using this fact we prove the following result.

Proposition 4.5.
(i) {df1, . . . ,dfn} = d{f1, . . . , fn}.
(ii) {f α1, . . . , αn} = f {α1, . . . , αn} + (−1)n+1(#(α2 ∧ . . . ∧ αn)f )α1.

Since any closed form is locally an exact form, we see that ifM is a Nambu–Poisson
manifold andα1, . . . , αn, β1, . . . , βn−1 are closed 1-forms then

{β1, . . . , βn−1, {α1, . . . , αn}} =
n∑
i=1

{α1, . . . , {β1, . . . , βn−1, αi}, . . . , αn}.

Also, for a generalized Poisson manifold of even order 2n, we have

Alt({β1, . . . , β2n−1, {α1, . . . , α2n}}) = 0

if β1, . . . , β2n−1, α1, . . . , α2n are closed 1-forms.
Using (6) and proposition 4.5, we deduce the following.

Proposition 4.6.If P ∈ Vk(M) then

∂P (α1, . . . , αk+2n−1) =
∑

16i1<...<i2n6k+2n−1

(−1)i1+···+i2n+n+1

×P({αi1, . . . , αi2n}, α1, . . . , α̂i1 . . . , α̂i2n , . . . , αk+2n−1)

+
∑

16i1<...<i2n−16k+2n−1

(−1)i1+...+i2n−1+n#(αi1 ∧ ∧ . . . ∧ αi2n−1)

×(P (α1, . . . , α̂i1, . . . , α̂i2n−1, . . . , αk+2n−1))

for α1, . . . , αk+2n−1 ∈ �1(M).

Next, we will obtain some relations between the de Rham cohomology and the gP-
cohomology.

Let k be an integer,k > 1. Consider the homomorphism ofC∞(M,R)-modules

#̃ :�k(M) −→ Vk(2n−1)(M)

given by

#̃(α)(α1, . . . , αk(2n−1)) = (−1)k

k![(2n− 1)!] k
∑

σ∈Sk(2n−1)

εσ α(#(ασ(1) ∧ . . . ∧ ασ(2n−1)), . . . ,

#(ασ((k−1)(2n−1)+1) ∧ . . . ∧ ασ(k(2n−1))) (7)

for α ∈ �k(M) and α1, . . . , αk(2n−1) ∈ �1(M), where Sk(2n−1) is the group of the
permutations of orderk(2n− 1) andεσ is the signature of the permutationσ .

For aC∞-function f , we define

#̃(f ) = f. (8)

A direct computation, using (2) and (7), shows the following.
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Lemma 4.7.
(i) If α, α1, . . . , α2n−1 are 1-forms onM then

#̃(α)(α1, . . . , α2n−1) = α(#(α1 ∧ . . . ∧ α2n−1)).

(ii) If α, α1, . . . , αk are 1-forms onM then

#̃(α1 ∧ . . . ∧ αk) = #̃(α1) ∧ . . . ∧ #̃(αk).

Now, we can prove the following.

Theorem 4.8.Let (M,3) be a generalized Poisson manifold of order 2n and#̃ :�k(M) −→
Vk(2n−1)(M) the homomorphism ofC∞(M,R)-modules given by (7) and (8). Then we have

#̃ ◦ d= −∂ ◦ #̃.

So, #̃ induces a homomorphism of complexes#̃ : (�∗(M), d) −→ (V∗(2n−1)(M),−∂), and
we have the corresponding homomorphism in cohomology#̃ :H ∗dR(M) −→ H

∗(2n−1)
0 gP (M).

Proof. From definition 4.2 and lemma 4.7, we deduce

#̃(df ) = −∂f (9)

for f ∈ C∞(M,R).
Thus, using (8), (9), proposition 4.3 and lemma 4.7, we obtain

#̃(d(f0df1 ∧ . . . ∧ dfk)) = −∂(#̃(f0df1 ∧ . . . ∧ dfk))

for f0, f1, . . . , fk ∈ C∞(M,R).
This completes the proof of our result. �

Remark 4.9.If (M,3) is a Poisson manifold, the homomorphism#̃ :H ∗dR(M) −→ H ∗0 gP(M)

of theorem 4.8 is just the canonical homomorphism between the de Rham cohomology and
the LP-cohomology ofM (see [19, 24]).

Next, we will obtain some relations between the gP-cohomology and the canonical
homology.

Using that [[i(P ), d], i(Q)] = i([P,Q]) we deduce the following.

Proposition 4.10.For P ∈ Vk(M) andλ ∈ �k+2n−1(M), we have

〈λ, ∂P 〉 − 〈δλ, P 〉 = −δ(i(P )λ)
where〈 , 〉 : �r(M)× V r (M) −→ C∞(M,R) is the duality map defined by

〈α,Q〉 = i(Q)α.
From proposition 4.10, it follows that the duality map induces a natural pairing

〈 , 〉 : Hj can
k (M)×Hk

j gP(M) −→ H 0 can
0 (M)

given by

〈[λ], [P ]〉 = [〈λ, P 〉].
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Example 4.11.
(i) For a symplectic manifoldM of dimension 2m we have that (see [6, 19])

Hk
LP(M)

∼= Hk
dR(M)

∼= H can
2m−k(M).

(ii) For an almost cosymplectic manifold of dimension 2m+ 1 we get that

Hk
LP(M)

∼= H can
2m−k(M)

but they are not isomorphic to the de Rham cohomology (see [10, 17]).
(iii) Let vM be a volume form on a compact (connected) manifoldM of dimension

2n > 4 with associated generalized Poisson tensor3. Then, the gP-cohomology groups are
the following:

H 0
0 gP(M) = {Casimir functions} ∼= R

H 2n−1
0 gP (M) = V2n−1(M)/{∂f |f ∈ C∞(M,R)}

H 1
1 gP(M) = {X ∈ V1(M)|LX3 = 0}

H 2n
1 gP(M) = V2n(M)/{∂X|X ∈ V1(M)} ∼= R

Hk
j gP(M) = Vk(M) for k = 2, . . . ,2n− 2, j 6= 0, 1.

So, we deduce that

H 0 can
0 (M) ∼= H 2n

1 gP(M) H 0 can
2n−1(M)

∼= H 1
1 gP(M)

H 1 can
1 (M) ∼= H 2n−1

0 gP (M) H 1 can
2n (M) ∼= H 0

0 gP(M)

H
j can
2n−k(M) ∼= Hk

j gP(M) ∀j 6= 0, 1, k = 2, . . . ,2n− 2.

(iv) In general, there is no an isomorphism between the generalized canonical homology
and the gP-cohomology, even in the Poisson case, as it has been proved in [12].

(v) LetM be a (connected) hyper-Kähler manifoldM (see example 3.10). From a direct
computation, we deduce that

∂(P ) = −2
3∑
i=1

∂i(P ) ∧3i

where∂i denotes the differential operator associated to the Poisson structure3i . However,
there is no a simple relation between the gP-cohomology and the de Rham cohomology of
M.

(vi) Let (M,ω) be a symplectic 2n-dimensional manifold with Poisson tensor3̄ and
put 3 = 3̄ ∧ 3̄ (see example 3.11). If∂ (resp. ∂̄) is the contravariant derivative for3
(resp. 3̄) we have

∂P = 2∂̄P ∧ 3̄ for all P ∈ Vk(M).
Define now the differential operator

d̃ :�k(M) −→ �k+3(M)

α 7−→ d̃α = 2dα ∧ ω.
Notice that ifL : �k(M) −→ �k+2(M) is the linear operator defined byLα = α ∧ ω, we
get d̃α = 2dLα. A direct computation shows thatd̃2 = 0. Thus, we obtain the following
three complexes

0−→ �j(M)
d̃−→�j+3(M)

d̃−→�j+6(M)
d̃−→· · ·

for j = 0, 1, 2. We denote the corresponding cohomology groups byH̃
3i+j
j (M).
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If #̄ : �k(M) −→ Vk(M) is the isomorphism defined bȳ3 we deduce that̄#d̃ = −∂#̄
and therefore:

H̃
3i+j
j (M) ∼= H 3i+j

j gP (M)

for j = 0, 1, 2. In order to obtain some results on thed̃-cohomology we will use the
following facts (see [18]):

(a) L is injective fork 6 n− 1;
(b) L is surjective fork > n− 1.
Hence we have:

H̃ 1
1 (M) = {α ∈ �1(M)|dα = 0} if n > 3

H̃ 2
2 (M) = {α ∈ �2(M)|dα = 0} if n > 4.

This shows that, in general, the cohomology groupsH̃
3i+j
j (M) are not finite dimensional.

Moreover, if 3i + j 6 n− 2 we deduce that the identity transformation�3i+j (M) −→
�3i+j (M) induces a linear mapping̃H 3i+j

j (M) −→ H
3i+j
dR (M) which is surjective.

On the other hand, if 3i + j > n + 2 we obtain that the identity transformation
�3i+j (M) −→ �3i+j (M) induces a linear mappingH 3i+j

dR (M) −→ H̃
3i+j
j (M) which is

injective.

5. Canonical homology and gP-cohomology for arbitrary Nambu–Poisson manifolds

In this paper we have introduced and studied the generalized Koszul differential
(definition 3.1) and the contravariant exterior differentiation (definition 4.2) for generalized
Poisson structures3 of even order on smooth manifolds. But, the Nambu–Poisson structures
are another important structures that generalize the Poisson structures for any order.

As we have seen in [15] the even Nambu–Poisson structures3 are generalized Poisson
(i.e. [3,3] = 0); moreover, since for any multivector3 of odd order is always true that
[3,3] = 0, then we can consider the generalized Koszul differential and the contravariant
exterior differentiation for Nambu–Poisson structures of any order. In general, for any
generalized almost Poisson structure3 of any order satisfying [3,3] = 0, it can be
defined the generalized Koszul differential and the contravariant exterior differentiation as
in definitions 3.1 and 4.2.

Remark 5.1.It should be noticed that in [3] the authors considered almost Poisson tensors
of arbitrary order, introducing an integrability condition in the odd order case as a new
algebraic relation. Thus, any Nambu–Poisson structure is generalized Poisson, accordingly
with their definition.

Remark 5.2.Although for a multivector3 of odd order the condition [3,3] = 0 is trivially
satisfied, this does not imply that the canonical homology and the gP-cohomology is trivial
for these structures, as we will see in the following examples.

Example 5.3 (volume forms).Let vM be a volume form in a compact (connected) manifold
M of any dimension, then the results of examples 3.4 and 3.9 for the canonical homology
and the results of example 4.11 (part (iii)) for the gP-cohomology, are still satisfied.

Example 5.4 (canonical Nambu–Poisson structures).Let us consider the manifoldRm, then
the canonical Nambu–Poisson tensor of ordern on Rm is given by

3 = ∂

∂x1
∧ . . . ∧ ∂

∂xn
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for coordinates(x1, . . . , xm) onRm. First, we will calculate the space of Casimir functions:

C =
{
f ∈ C∞(Rm,R)| ∂

∂xi
(f ) = 0, for all i = 1, . . . , n

}
∼= C∞(Rm−n,R).

The canonical homology group of degreem is:

Hj can
m (Rm) = {dx1 ∧ . . . ∧ dxm} ⊗ C

with 06 j 6 n− 2 andm− j a multiple ofn− 1.
The gP-cohomology groups of degrees 0, 1 are:

H 0
0 gP(R

m) = C

H 1
1 gP(R

m) =
{ n∑
i=1

f i
∂

∂xi

∣∣∣∣ n∑
i=1

∂

∂xi
(f i) = 0

}
⊕
(〈

∂

∂xn+1
, . . . ,

∂

∂xm

〉
R
⊗ C

)
.

Now, for n = 3 we will calculate the gP-cohomology group of degree 2:

H 2
0 gP(R

m) =
32
(

∂
∂x1
, ∂
∂x2
, ∂
∂x3

)
{i(df )3|f ∈ C∞(Rm,R)} ⊕

{ 3∑
j>3,i=1

f ij
∂

∂xi
∧ ∂

∂xj
|

3∑
i=1

∂

∂xi
(f ij ) = 0

}
⊕
(
32
R

(
∂

∂x4
, . . . ,

∂

∂xm

)
⊗ C

)
and, forn > 3:

H 2
2 gP(R

m) = 32

(
∂

∂x1
, . . . ,

∂

∂xn

)
⊕
{ n∑
j>n,i=1

f ij
∂

∂xi
∧ ∂

∂xj

∣∣∣∣ n∑
i=1

∂

∂xi
(f ij ) = 0

}
⊕32

R

(
∂

∂xn+1
, . . . ,

∂

∂xm

)
⊗ C.

Example 5.5 (Nambu–Poisson manifolds).From the fact that the Hamiltonian vector fields
are infinitesimal automorphisms of the Nambu–Poisson structure [15], we have that the space
of Hamiltonian vector fields of a Nambu–Poisson manifold (of degreen) is a subspace of
the gP-cohomology group of degree 1, that is,{Xf1...fn−1|fi ∈ C∞(M,R)} ⊆ H 1

1 gP(M). In
general, this inclusion is strict as we have seen in example 5.4.
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[8] Chinea D, de Léon M and Marrero J C 1996 A canonical differential complex for Jacobi manifoldsPreprint

IMAFF-CSIC
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